3.310 \(\int \frac{a B+b B \tan (c+d x)}{(a+b \tan (c+d x))^2} \, dx\)

Optimal. Leaf size=47 \[ \frac{b B \log (a \cos (c+d x)+b \sin (c+d x))}{d \left (a^2+b^2\right )}+\frac{a B x}{a^2+b^2} \]

[Out]

(a*B*x)/(a^2 + b^2) + (b*B*Log[a*Cos[c + d*x] + b*Sin[c + d*x]])/((a^2 + b^2)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0540156, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {21, 3484, 3530} \[ \frac{b B \log (a \cos (c+d x)+b \sin (c+d x))}{d \left (a^2+b^2\right )}+\frac{a B x}{a^2+b^2} \]

Antiderivative was successfully verified.

[In]

Int[(a*B + b*B*Tan[c + d*x])/(a + b*Tan[c + d*x])^2,x]

[Out]

(a*B*x)/(a^2 + b^2) + (b*B*Log[a*Cos[c + d*x] + b*Sin[c + d*x]])/((a^2 + b^2)*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3484

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[(a*x)/(a^2 + b^2), x] + Dist[b/(a^2 + b^2),
 Int[(b - a*Tan[c + d*x])/(a + b*Tan[c + d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]

Rule 3530

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c*Log[Re
moveContent[a*Cos[e + f*x] + b*Sin[e + f*x], x]])/(b*f), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d,
0] && NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]

Rubi steps

\begin{align*} \int \frac{a B+b B \tan (c+d x)}{(a+b \tan (c+d x))^2} \, dx &=B \int \frac{1}{a+b \tan (c+d x)} \, dx\\ &=\frac{a B x}{a^2+b^2}+\frac{(b B) \int \frac{b-a \tan (c+d x)}{a+b \tan (c+d x)} \, dx}{a^2+b^2}\\ &=\frac{a B x}{a^2+b^2}+\frac{b B \log (a \cos (c+d x)+b \sin (c+d x))}{\left (a^2+b^2\right ) d}\\ \end{align*}

Mathematica [C]  time = 0.0630232, size = 77, normalized size = 1.64 \[ \frac{B ((-b-i a) \log (-\tan (c+d x)+i)+i (a+i b) \log (\tan (c+d x)+i)+2 b \log (a+b \tan (c+d x)))}{2 d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*B + b*B*Tan[c + d*x])/(a + b*Tan[c + d*x])^2,x]

[Out]

(B*(((-I)*a - b)*Log[I - Tan[c + d*x]] + I*(a + I*b)*Log[I + Tan[c + d*x]] + 2*b*Log[a + b*Tan[c + d*x]]))/(2*
(a^2 + b^2)*d)

________________________________________________________________________________________

Maple [A]  time = 0.029, size = 77, normalized size = 1.6 \begin{align*} -{\frac{\ln \left ( 1+ \left ( \tan \left ( dx+c \right ) \right ) ^{2} \right ) Bb}{2\,d \left ({a}^{2}+{b}^{2} \right ) }}+{\frac{B\arctan \left ( \tan \left ( dx+c \right ) \right ) a}{d \left ({a}^{2}+{b}^{2} \right ) }}+{\frac{b\ln \left ( a+b\tan \left ( dx+c \right ) \right ) B}{d \left ({a}^{2}+{b}^{2} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x)

[Out]

-1/2/d/(a^2+b^2)*ln(1+tan(d*x+c)^2)*B*b+1/d/(a^2+b^2)*B*arctan(tan(d*x+c))*a+1/d*b/(a^2+b^2)*ln(a+b*tan(d*x+c)
)*B

________________________________________________________________________________________

Maxima [A]  time = 1.73875, size = 97, normalized size = 2.06 \begin{align*} \frac{\frac{2 \,{\left (d x + c\right )} B a}{a^{2} + b^{2}} + \frac{2 \, B b \log \left (b \tan \left (d x + c\right ) + a\right )}{a^{2} + b^{2}} - \frac{B b \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{2} + b^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

1/2*(2*(d*x + c)*B*a/(a^2 + b^2) + 2*B*b*log(b*tan(d*x + c) + a)/(a^2 + b^2) - B*b*log(tan(d*x + c)^2 + 1)/(a^
2 + b^2))/d

________________________________________________________________________________________

Fricas [A]  time = 1.75063, size = 153, normalized size = 3.26 \begin{align*} \frac{2 \, B a d x + B b \log \left (\frac{b^{2} \tan \left (d x + c\right )^{2} + 2 \, a b \tan \left (d x + c\right ) + a^{2}}{\tan \left (d x + c\right )^{2} + 1}\right )}{2 \,{\left (a^{2} + b^{2}\right )} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

1/2*(2*B*a*d*x + B*b*log((b^2*tan(d*x + c)^2 + 2*a*b*tan(d*x + c) + a^2)/(tan(d*x + c)^2 + 1)))/((a^2 + b^2)*d
)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))**2,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [A]  time = 1.2621, size = 104, normalized size = 2.21 \begin{align*} \frac{\frac{2 \, B b^{2} \log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{a^{2} b + b^{3}} + \frac{2 \,{\left (d x + c\right )} B a}{a^{2} + b^{2}} - \frac{B b \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{2} + b^{2}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^2,x, algorithm="giac")

[Out]

1/2*(2*B*b^2*log(abs(b*tan(d*x + c) + a))/(a^2*b + b^3) + 2*(d*x + c)*B*a/(a^2 + b^2) - B*b*log(tan(d*x + c)^2
 + 1)/(a^2 + b^2))/d